

DUTCH SUSTAINABLE DEVELOPMENT BV

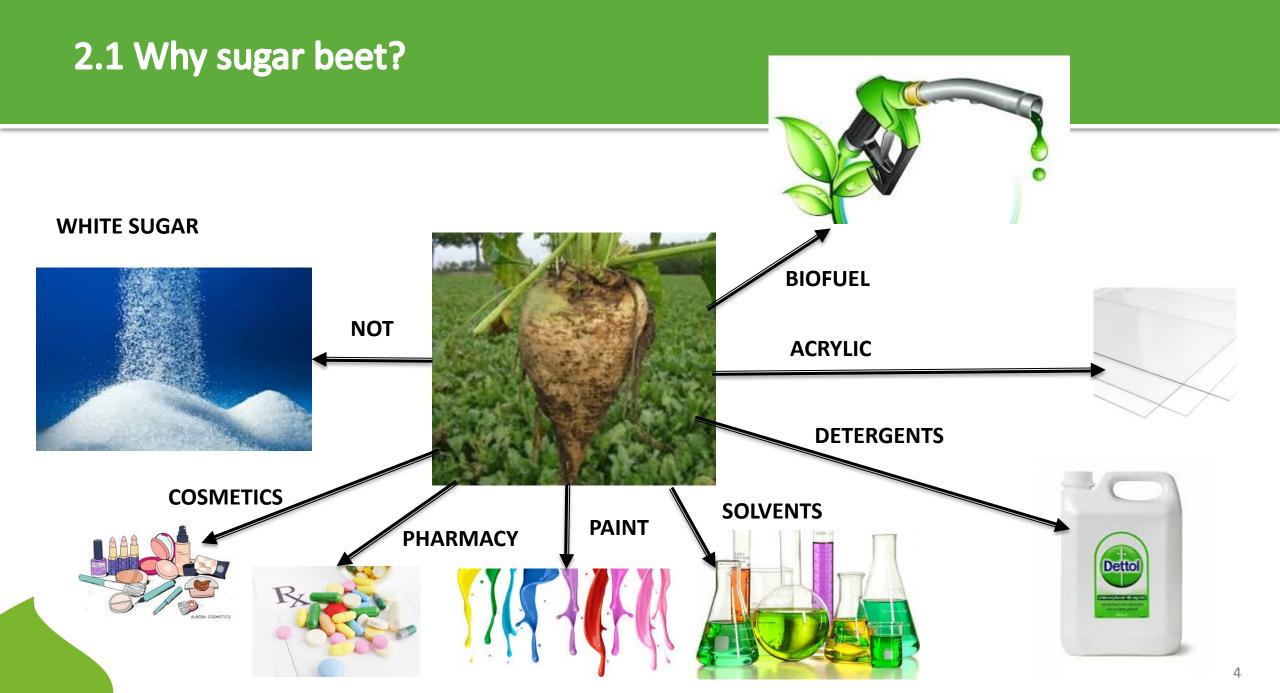
"From CHEMBEET via In NIJE DEI to Biethanol" Seminar ACRRES - Lelystad

Hans van Klink, 4 July 2019

Content presentation

- 1. Background DSD;
- 2. Why sugar beet;
- 3. Direct Processing concept;
- 4. Fermentable sugars;
- 5. Conclusion;

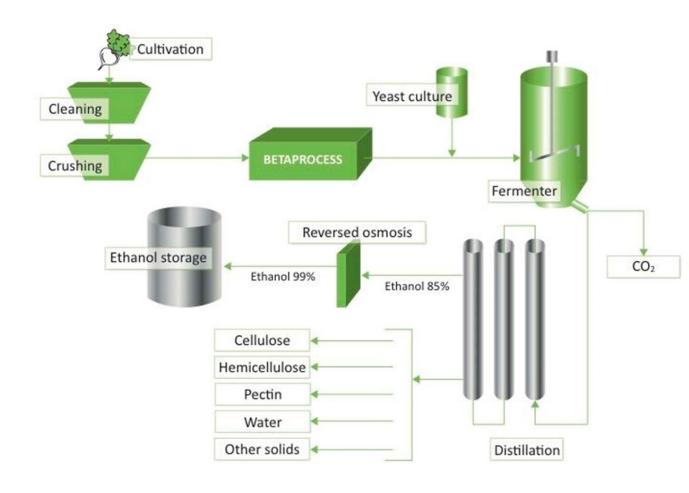
1. Background DSD / Betaprocess


Dutch Sustainable Development BV:

- Product and concept developer (cradle to cradle);
- Background / history in sugar industry;
- Active with projects in the field of:
 - Sustainable agriculture;
 - Food processing industry;
 - Development sustainable agro business parks;
- Technology development, like Direct Processing with Betaprocess;
- Large network free lance specialists / expertise.
- DSD is the linking pin and concept developer between agro & chemistry and getting familiar with all issues in that chain.

Deloitte

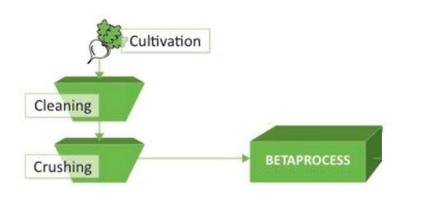
2.2 Why sugar beet?

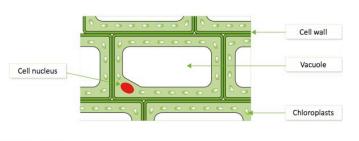

• The ideal Biobased crop for:

- 1. Bulk chemicals \rightarrow commodity chemicals, low added value;
- Fine chemicals → small quantities, relatively high prices and "what it is" specification:
 - building blocks;
 - advanced intermediates;
 - active ingredients;
- Specialty chemicals → specialties, effect chemicals, high value added to functional value, agrichemicals, essential oils, food supplements, ingredients for cosmetics and pharmacy.

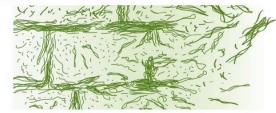
→ Act as intermediates, significant ingredient in food, feed, pharma and cosmetics!

3.1 Direct processing with Betaprocess

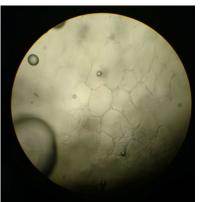



Fermentation:

- Proven technology;
- After Betaprocess fermentation goes better, efficient and in shorter time;
- Higher yield: + 10 20%;
- Bio-ethanol: 10 20% lower investment costs than from corn/wheat;
- Very pure CO2 side stream
- More R&D running on use of pectin's, proteins and (hemi)celluloses.



3.2 Direct Processing with Betaprocess


After Betaprocess

Betaprocess: opening cell walls by vacuum explosion:

- Much lower energy consumption than standard sugar technology;
- All fermentable sugars readily available;
- Fermentable sugars available for other fermentations or third partners.

3.3 Current Situation May 2019

CHEMBEET	In NIJE DEI	Biethanol
Eranet – Bioenergy	DEI	TKI-BBEGR
Jan. 2015 – March 2018	Nov. 2018 – June 2020	April 2019 – June 2020
Objective: proof of principle DP+Beta	Objective: robustness process flow, washing, optimize distillation, upscaling to demo level	Objective: use of (hemi-)cellulose and pectin with non-GMO micro- organism to produce sugar → advanced bio-EtOH
Conclusion: positive 100 litre EtOH from 1 ton sugar beets, scale up to Demoplant	Conclusion (1st part): higher EtOH yield > 110 litre/ton beet, financing still difficult	Conclusion: just start the project
Attention points: robustness process flow, washing beets	Attention points: attract financing for Demoplant	Attention points: watery substance (residue after distillation = 95% water)
Partners: Acrres, UWM (Poland), VAM Watertech	Partners: Acrres, Rodenburg Biopolymers, Licorne Fuels, Sustanable Forum	Partners: Acrres, Dutch DNA Biotech

3.4 Betaprocess pilot plant Acrres Lelystad

3.5 Benchmark Direct Processing

Sugar beet ethanol (via Direct Processing)	Cereal ethanol
Relative simple process / less process steps	More process steps (transfer starch \rightarrow sugars)
Homogeneous stable sugar%	Unstable input starch and mutation factor
Relative low CAPEX and OPEX	High CAPEX
High ethanol output per HA	Low ethanol output per HA
Positive effect on land use / other crops	Monoculture
Rest streams: high value products	DDGS not stable depending on process

	Sugar beet	Cane sugar	Corn	Cereals
Ethanol yield (HL/HA)	80 - 85	70 - 75	40	32
Average water usage (in mm)	500 - 600	900 - 1000	600 - 800	600 - 1500

3.6 (preliminary) Results "In Nije DEI"

Batch	1		2		3		4		5		6		gestopt		7		8		9	
Sample	DSD-600-4-	1/01	DSD-600-4-	1/01	DSD-600-5-2	1/01	DSD-600-5-	1/01	DSD-600-6	5-1/01	DSD-600-6-	-1/01	DSD-600-7-	-1/01	DSD-600-7	-1/01	DSD-600-8	-1/01	DSD-600-8-	-1/01
Run/Reactor	4/R01	-	4/R02		5/R01	_	5/R02	_	6/R01		6/R02		7/R01		7/R02		8/R01	_	8/R02	
Datum	21-3-2019		21-3-2019		4-4-2019		4-4-2019		23-4-2019		25-4-2019		2-5-2019		2-5-2019		14-5-2019		16-5-2019	
ETHANOL per kg biet totaal produ	uctie	4/R01		4/R02		5/R01		5/R02		6/R01		6/R02				7/R02		8/R01		8/R02
KG Biet inzet		529		585		637		637		675		681				754		624		581
KG Ferm massa		620		551		633		693		693		682				716		721		707
Hoeveelheid Suikers	19,0%	100,5	19,0%	111,2	17,5%	111,3	17,5%	111,3	17,9%	121,1	17,5%	119,0			18,6%	140,5	12,7%	79,4	12,7%	73,9
Suiker omzetting factor																				
Theoretisch	0,5383		0,5383		0,5383		0,5383		0,5383		0,5383				0,5383		0,5383		0,5383	
Suiker voor EtOH	90%		90%		90%		90%		90%		90%				90%		90%		90%	
KG EtOH op basis biet (theor)		48,7		53,8		53,9		53,9		58,7		57,7	,			68,1		38,5		35,8
KG EtOH op basis ferm mass		49,2		50,5		54,3		56,5		70,1		59,9				58,7		50,7		55,1
KG EtOH op basis destillaat		44,5		46,4		48,7		53,8		61,2		60,8	5			60,1		49,2		49,6
Verschil Dest vs Ferm:		-9%		-8%		-10%		-5%		-13%		1%				2%		-3%		-10%
KG EtOH/TON biet (dest)		84		79		76		84		91		89				80		79		85
LT EtOH/TON biet (dest)		106		100		97		107		115		113				101		100		108

3.7 Ethanol production via DP+Beta

1 HA sugar beet = 8.500 liter ethanol:

→ 20% higher output
1 ton sugar beet = > 100 liter EtOH
(Chembeet) in "In NIJE DEI": > 110
liter

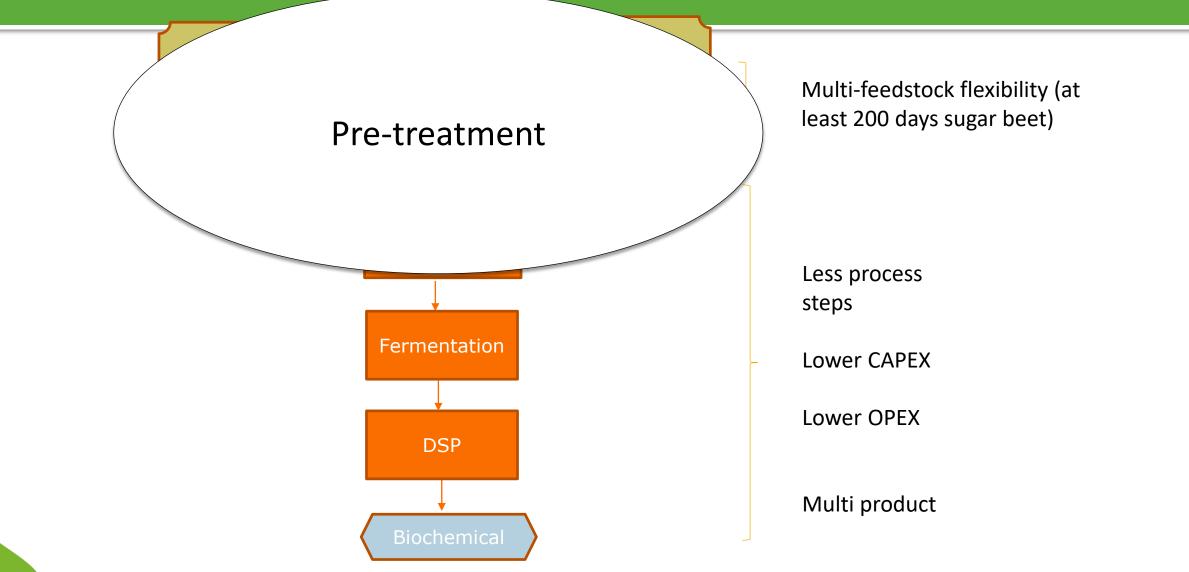
EtOH > 110 1 Hectare 82,5 ton 7200 I 3 ton of land Sugar Cane Ethanol Green Ethylene

produces

produce

produce

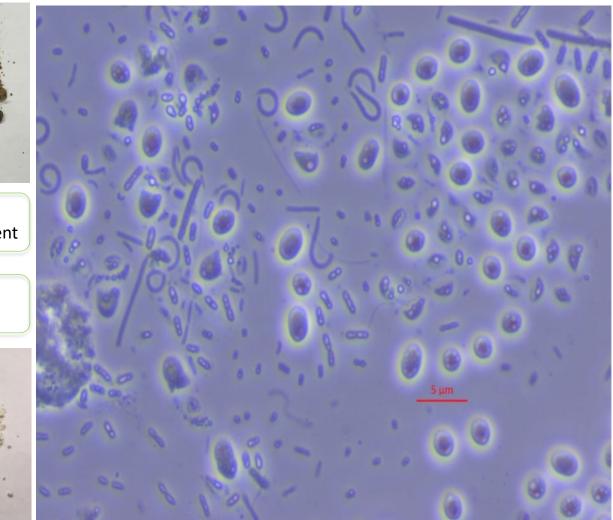
produce


Biethanol: + advanced bioethanol!!

3 ton

Green PE

4.0 Pretreatment into fermentable sugars

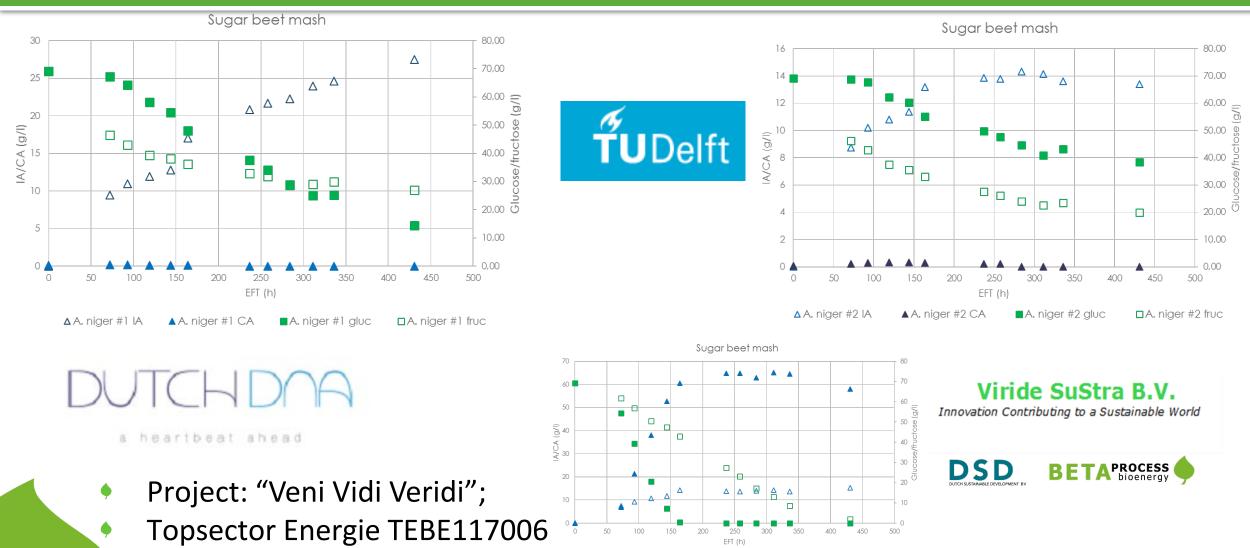

4.1 Fermentable sugars: PHA

PHA rich biomass up to 80% PHA content

Extracted PHA up to 98% purity

PHA production reactor:

- PHA accumulating microorganisms are starting to grow;
- microbes (orange arrows) that have PHA granules inside;
- nitrogen limited system;
- acetic, butyric and lactic acids are perfect substrates for PHA production.



4.2 Fermentable sugars: PHA PAQUES

Why PHA from sug Potential for food packaging!!!!!	gar? Wastewater	Sugar not suitable for food (as produced by Betaprocess)
Biomass type	Open mixed culture	Open mixed culture
Feedstock cost	Negative cost	Low compared to refined sugar and other biobased feedstocks
Product stability	Dependent on feedstock	Dependent on sugar production process
Legislation	Depending on feedstock waste origin can be an issue	Never considered a waste
Health applications	No	Difficult
Food applications	Difficult and dependent on feedstock	Yes

4.3 Fermentable sugars: Itaconic Acid

4.4 C2 chain potential (Info: IHS Markit 2016)

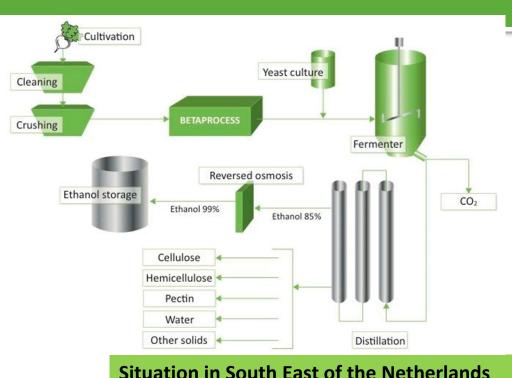
Product	Ethylene usage		% recycling	Remarks	
Polyethylene	11.500	Kton	70%	Largest part in packaging, good recycling (physics and chemical)	
Ethylbenzene / styrene / PS	5.000	Kton	20%	Isolation purposes, limited to recycle	
Ethylene oxide / ethylene glycol / EO derivate	2.800	Kton	0%	Not to recycle	
PP and rubber	1.000	Kton	60%	To recycle	
Hexane / Octane	300	Kton	70%	Good to recycle	E
Others	200	Kton	0%	Not to recycle	
TOTAL EU Production	20.800	Kton		Situation 2016, expected yearly growth 4%	
Of which rec	cycled		9.8	360 kton and	
renewed yearly			10.9	940 kton;	Usage sugar beets:

renewed yearly

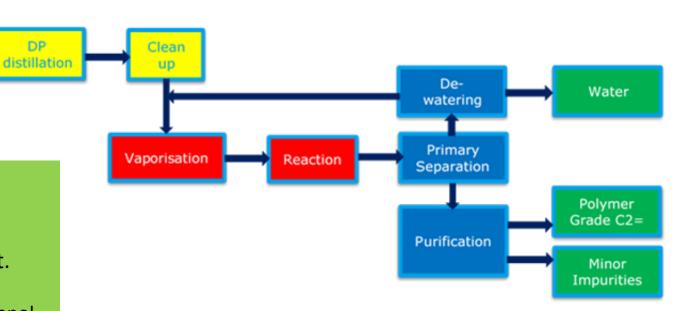
via pyrolysis techniques 2/3 from ethanol 1/3

expected growth (< 2030):

7.100 kton (based on plastics) and 3.840 kton;


6.650 kton.

17


3,8 mln HA/year =

3% EU arable area

4.5 C2 Chain

Beet cultivation in south east Netherlands (in thousand hectare) TechnipFMC 1996 2005 2015 9,6 5,2 12,2 Limburg **Oost Brabant** 7,2 5,9 3.6 19,4 15,5 8,8 **Total**

This is equivalent to 140.000 cubic meter of ethanol (= 110 kta), which could be converted to 64 kta bio ethylene

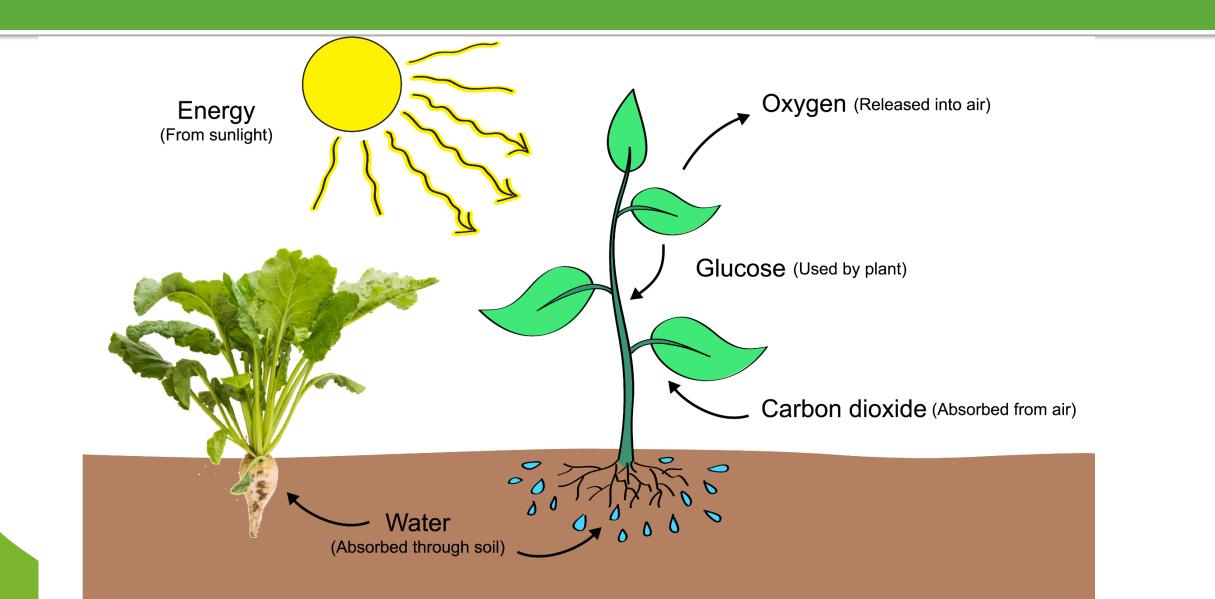
ton/hectare means 1.4 million tons of beet.

Potential of 20.000 hectare with 70

In cooperation with Technip Benelux BV to combine DP+Beta with the Hummingbird technology

5.1 Conclusions

- Direct processing is very attractive (as well for the farmer as the factory);
- Small scale biorefinery is profitable (less transport costs, positive developments rural area);
- Attractive price paid to farmers (net income);
- Important for rural development, green future, green chemistry;
- Not only for ethanol but also for other green chemicals (future);
- Soil fertility, water usage, yielding other crops, sustainability \rightarrow all in favour of sugar beets;
 - For realisation of objectives Paris Agreement (COP21) you need sugar beet!!


5.2 Conclusions – Yield and ratio added value

	0.05	kg but /kg sugar beet	
n-Butanol	2.73	€ revenue butanol/€ sugar beet cost	
	0.13	kg SA/kg sugar beet	
Succinic Acid	11.4	€ revenue SA/€ sugar beet cost	
	0.15	kg LA/kg sugar beet	
Lactic Acid	6.32	€ revenue LA/€ sugar beet cost	
	0.09	kg EtOH/kg sugar beet	
Fuel Ethanol	1.60	€ revenue EtOH/€ sugar beet cost	<i>DIANT N'ORE</i>
			SUGAR BEETS
	0.09	kg EtOH/kg sugar beet	
Food Ethanol	2.56	€ revenue EtOH/€ sugar beet cost	SUGAR IS ENERGY - LET'S GIVE EM PLENTY

• Ratio added value: selling price of produced product divided by purchase price of feedstock (info: TU Delft, A. Straathof, 2017)

5.3 Sugar beet and a sunny future!!!!!

Direct Processing with Betaprocess

Direct processing: starting point for using sugar beet as raw material for the chemical industry and as crop for the most attractive circle economy model.

Contact

DSD Betaprocess

Choorhoekseweg 8-b NL 4424 NW Wemeldinge The Netherlands

T +31 (0)113 62 10 74

W <u>www.betaprocess.eu</u>

Hans van Klink

Director Project Development

E	hans@dsdbv.com
Μ	+31 (0)6 53 40 47 21

Cees van Loon

Commercial manager

E	<u>cees@betaprocess.eu</u>
Μ	+31 (0)6 44 92 07 08

Chris de Visser

Business Development ACRRES

E <u>chris.devisser@wur.nl</u>

M +31 (0)320 291 692

Carel Braakman

Project advisor

E	<u>carel@zeelandnet.nl</u>
Μ	+31 (0)6 53 25 40 92